Logo
blur

掌握 AI 的力量:最高效的大模型学习和解决方案

清华大模型团队为您呈现最高效的大模型学习和解决方案

icon 阅读最前沿的技术分析,掌握 AI 发展的脉搏

最新 AI 进展解读

DeepSeeK 开源周

DeepSeeK 开源周

  • 1【Day1】 FlashMLA - let's geek out
  • 2【Day2】 DeepEP - 第一个用于 MoE 模型训练和推理的开源 EP 通信库
  • 3【Day3】 DeepGEMM - 大道至简的通用矩阵运算
  • 4【Day4】并行策略优化 - 将并行进行到底
  • 5【Day5】 Fire-Flyer 文件系统 - 让数据处理坐上高铁
  • 6【Day6】 DeepSeek 如何做到利润率 545%

DeepSeek 深度教程

DeepSeek 深度教程

  • 1DeepSeek从入门到精通
  • 2DeepSeek指导手册
  • 3DeepSeek-R1:通过强化学习激励LLMs的推理能力
  • 4DeepSeekV3技术报告
  • 5DeepSeek_VL2技术报告

DeepSeek 视频教程

DeepSeek 深度教程

  • 1DeepSeek从入门到精通
  • 2DeepSeek本地部署
  • 3DeepSeek实战技巧
  • 4刘知远团队大模型公开课
  • 5李宏毅机器学习系列课程
  • 6李沐大神《动手学深度学习》

提示词工程

  • 1Prompt-Engineering-Guide
  • 2openai-cookbook
  • 3anthropic-cookbook
  • 4generative-ai-for-beginners
  • 5promptflow
  • 6Awesome-Prompt-Engineering
  • 7LangGPT
  • 8SuperPrompt
  • 9promptfoo
  • 10Learning-Prompt
  • 11code2prompt
  • 12tree-of-thoughts
  • 13Learn_Prompting

AI 经典教程

经典书籍

  • 1大规模语言模型:从理论到实践
  • 2大语言模型
  • 3动手做AI Agent
  • 4Generative AI Handbook: A Roadmap for Learning Resources
  • 5Understanding Deep Learning
  • 6Taming LLMs: A Practical Guide to LLM Pitfalls with Open Source Software
  • 7自然语言处理:大模型理论与实践
  • 8Hugging Face Course
  • 9Google Machine Learning Crash Course
  • 10Illustrated book to learn about Transformers & LLMs
  • 11Building LLMs for Production: Enhancing LLM Abilities and Reliability with Prompting, Fine-Tuning, and RAG
  • 12面向开发者的LLM入门教程
  • 13Foundations of Large Language Models
  • 14动手学深度学习
  • 15动手学大模型Dive into LLMs
  • 16Build a Large Language Model (From Scratch)
  • 17多模态大模型
  • 18大型语言模型实战指南:应用实践与场景落地
  • 19Hands-On Large Language Models
  • 20动手学强化学习
  • 21大模型基础

顶级名校公开课

  • 1CS324: Large Language Models
  • 2CS229: Machine Learning
  • 3CS230: Deep Learning
  • 4CS231n: CNN for Visual Recognition
  • 5CS224n: NLP with Deep Learning
  • 6CS224w: Machine Learning with Graphs
  • 7CS224u: Natural Language Understanding
  • 8CS234: Reinforcement Learning
  • 9CS330: Deep Multi-task Learning
  • 10CS25: Transformers United
  • 11Stanford ML Explainability
  • 12Stanford NLP
  • 13CMU CS 11-711: Advanced NLP
  • 14CMU CS 11-747: Neural Networks for NLP
  • 15CMU CS 11-737: Multilingual NLP
  • 16CMU CS 11-785: Deep Learning
  • 17CMU CS 11-777: Multimodal ML
  • 18CMU CS 10-708: Probabilistic Graphical Models
  • 19CMU LTI Low Resource NLP
  • 20MIT OpenCourseWare
  • 21MIT 6.034: Artificial Intelligence
  • 22MIT 6.S094: Deep Learning
  • 23MIT 6.S191: Introduction to Deep Learning
  • 24MIT 6.S192: Deep Learning for Art
  • 25CS221: Artificial Intelligence
  • 26MIT 6.5940: TinyML

LLM 经典论文

  • 1DeepSeek-R1
  • 2DeepSeek-V3
  • 3DeepSeek-VL2
  • 4Attention Is All You Need
  • 5BERT
  • 6GPT-3
  • 7PaLM
  • 8InstructGPT
  • 9Constitutional AI
  • 10LLaMA
  • 11GPT-4
  • 12PaLM 2
  • 13RWKV
  • 14Llama 2
  • 15Code Llama
  • 16Mistral 7B
  • 17Phi-2
  • 18Mixtral 8x7B
  • 19Stable LM 3B
  • 20arXiv LLM Papers
  • 21The First Law of Complexodynamics
  • 22Recurrent Neural Network Regularization
  • 23Keeping Neural Networks Simple
  • 24Pointer Networks
  • 25Order Matters: Sequence to Sequence for Sets
  • 26GPipe: Easy Scaling with Micro-Batch Pipeline Parallelism
  • 27Deep Residual Learning for Image Recognition
  • 28Multi-Scale Context Aggregation by Dilated Convolutions
  • 29Neural Message Passing for Quantum Chemistry
  • 30Neural Machine Translation by Jointly Learning to Align and Translate
  • 31Identity Mappings in Deep Residual Networks
  • 32A Simple Neural Network Module for Relational Reasoning
  • 33Variational Lossy Autoencoder
  • 34Relational Recurrent Neural Networks
  • 35Neural Turing Machines
  • 36Deep Speech 2
  • 37Scaling Laws for Neural Language Models
  • 38A Tutorial on the MDL Principle
  • 39Machine Super Intelligence
  • 40Kolmogorov Complexity and Algorithmic Randomness
  • 41Stanford's CS231n CNN for Visual Recognition
  • 42Quantifying Complexity in Closed Systems
  • 43Gemini
  • 44Claude 3
  • 45Papers with Code LLM
  • 46The Unreasonable Effectiveness of RNNs
  • 47Understanding LSTM Networks

LLM 训练框架

  • 1Axolotl
  • 2LLaMA-Factory
  • 3360-LLaMA-Factory
  • 4unsloth
  • 5TRL
  • 6Firefly
  • 7Xtuner
  • 8torchtune
  • 9Swift
  • 10AutoTrain
  • 11OpenRLHF
  • 12Ludwig
  • 13mistral-finetune
  • 14aikit
  • 15H2O-LLMStudio
  • 16LitGPT
  • 17LLMBox
  • 18PaddleNLP
  • 19workbench-llamafactory
  • 20TinyLLaVA Factory
  • 21LLM-Foundry
  • 22lmms-finetune
  • 23Simplifine
  • 24Transformer Lab
  • 25Liger-Kernel
  • 26ChatLearn
  • 27nanotron
  • 28Proxy Tuning
  • 29Effective LLM Alignment
  • 30Autotrain-advanced
  • 31Meta Lingua
  • 32Vision-LLM Alignemnt
  • 33finetune-Qwen2-VL
  • 34Online-RLHF
  • 35InternEvo
  • 36veRL
  • 37Oumi
  • 38Kiln

LLM 推理框架

  • 1LM Studio
  • 2LLM Pricing
  • 3NVIDIA ChatRTX
  • 4ollama
  • 5Open WebUI
  • 6Text Generation WebUI
  • 7Xinference
  • 8LangChain
  • 9LlamaIndex
  • 10lobe-chat
  • 11TensorRT-LLM
  • 12vllm
  • 13LlamaChat
  • 14chat-with-mlx
  • 15Open Interpreter
  • 16Chat-ollama
  • 17chat-ui
  • 18MemGPT
  • 19koboldcpp
  • 20LLMFarm
  • 21enchanted
  • 22Flowise
  • 23Jan
  • 24LMDeploy
  • 25RouteLLM
  • 26MInference
  • 27Mem0
  • 28SGLang
  • 29AirLLM
  • 30LLMHub
  • 31YuanChat
  • 32LiteLLM
  • 33GuideLLM
  • 34LLM-Engines
  • 35OARC
  • 36g1
  • 37MemoryScope
  • 38OpenLLM
  • 39Infinity
  • 40optillm
  • 41LLaMA Box
  • 42ZhiLight
  • 43DashInfer
  • 44LocalAI
  • 45ktransformers

应用和工具链

  • 1LangChain
  • 2GPT4All
  • 3Unstructured.io
  • 4LlamaIndex
  • 5dify
  • 6langfuse
  • 7Auto-GPT
  • 8PrivateGPT

数据处理工具

  • 1LangChain Text Splitters
  • 2Unstructured.io
  • 3LlamaIndex
  • 4TextCortex
  • 5Label Studio
  • 6Texthero
  • 7Snorkel
  • 8Prodigy
  • 9DataTorch
  • 10Tabula
  • 11Adobe PDF Services API
  • 12Great Expectations
  • 13Kedro
  • 14Weights & Biases
  • 15Cleanlab
  • 16DeepSpeed
  • 17Doccano
  • 18Rubrix
  • 19Argilla
  • 20DataPrep.ai
  • 21Haystack
  • 22Datasets CLI
  • 23PDFPlumber
  • 24Nougat
  • 25Grobid
  • 26PdfMiner.six
  • 27OCRmyPDF
  • 28Camelot
  • 29DocTR
  • 30PaddleOCR

知识库 RAG

DeepSeek 深度教程

  • 1AnythingLLM
  • 2MaxKB
  • 3RAGFlow
  • 4Dify
  • 5FastGPT
  • 6Langchain-Chatchat
  • 7QAnything
  • 8Quivr
  • 9RAG-GPT
  • 10Verba
  • 11FlashRAG
  • 12GraphRAG
  • 13LightRAG (SylphAI-Inc)
  • 14GraphRAG-Ollama-UI
  • 15nano-GraphRAG
  • 16RAG Techniques
  • 17ragas
  • 18kotaemon
  • 19RAGapp
  • 20TurboRAG
  • 21LightRAG (HKUDS)
  • 22TEN
  • 23AutoRAG
  • 24KAG (OpenSPG - knowledge-enhanced)
  • 25Fast-GraphRAG
  • 26Tiny-GraphRAG
  • 27DB-GPT GraphRAG
  • 28Chonkie
  • 29RAGLite
  • 30KAG (OpenSPG - logical form)
  • 31CAG
  • 32MiniRAG
  • 33XRAG
icon 特色

我们提供什么

完整的 AI 定制解决方案

icon

高质量的 AI 课程和 AI 工具搜索

为您呈现系统性精选的 AI 开源课程和 AI 开源工具一站式搜索,节省您在碎片化信息里的时间消耗

icon

最专业的 AI 学习计划量身制定

基于您的学习进度为您量身定制专属学习计划,最大程度提升学习效率

icon

沉浸式的学习体验

Mentor Copilot 随时进行专业知识的答疑解惑,为您提供最专注的学习体验

icon

最前沿的 AI 技术深度解读

从大模型理论创新者的视角深度剖析最前沿的 AI 技术。为您提供专业的咨询参考

icon

大模型解决方案一站式定制

从场景定制,模型定制,数据处理,模型训练,生产环境推理服务搭建,为您解决最真实的场景需求

icon

清华大学大模型团队专业 AI 咨询

团队成员来自清华大学专业大模型团队和一线互联网资深 AI 工程师,为您提供最专业的 AI 咨询服务

icon 需要任何帮助吗?

联系我们

清华大模型团队为您呈现最好的开源解决方案和开源课程。

新闻 & 更新

及时了解我们工具的一切最新信息